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SUMMARY

The equations for determining the undamped natural vibrations of
free-free unsymmetrical beams and launch-vehicle structures are developed
herein. The analysis treats a continuous free-free system as an equiv-
alent discrete-mass system of a finite number of degrees of freedom. The
flexure-load relationships are equated by influence coefficients which
are derived in the present paper by considering both flexure and deflec-
tions from local rotations. Matrix notations are used throughout the
paper because of their suitability to the analysis of discrete-mass
systems. Equations are developed for the dynamic equilibrium of the
system, the natural frequencies and mode shapes and their first deriva-
tives, the bending moments associated with the modes, and the influence
coefficients. The results of an investigation on the accuracy of the
natural frequencies and mode shapes in terms of the number of discrete
masses employed in the solution are also included. The procedures are
illustrated by a numerical analysis of a uniform beam, and the applica-
tion of the matrix procedure to a typical launch vehicle is given.

INTRODUCTION

The undamped free-free natural modes of a structure have a wide
variety of uses in engineering problems. The orthogonal properties of
the mode shapes make them desirable functions for use in series solu-
tions involving generalized coordinates, widely known as "modal form
solutions.”" A knowledge of the time history of the natural frequencies
of a spin-stabilized rocket vehicle is essential to the design of the
spin program and is of value in establishing proper instrumentation for
monitoring environmental responses. Modal information is also essen-
tial to proper positioning of guidance sensing devices and for investi-
gating the stability characteristics of vehicles with closed-loop con-
trol systems.



The transient mass and structural characteristics of a typical
multistage rocket vehicle require that the natural-vibration character-
istics of the vehicle be known at least for the ignition and burnout
times of each stage of flight and frequently for other conditions such
as those at a Mach number of 1, maximum dynamic pressure, and minimum
1ift. For transient wind-response studies considering variable coeffi-
cients in the equations of motion, it is frequently required that the
natural modes and their related properties be defined as often as
10 times during first-stage burning. These stringent requirements
involve substantial engineering effort and Justify the development of
computing techniques adaptable to automatic digital computers.

Considerable work has been done on the problem of computing natural
vibrations of beams, and a wide variety of methods are available for
accomplishing such ends. However, none of the published procedures ade-
quately and conveniently satisfy the need for volume production of modal
data for launch-vehicle structures.
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It 1is the purpose of this paper to present a solution of the natural
vibrations of structures which satisfies the specific needs of the rocket
vehicle designer. The procedure consists of a matrix formulstion gen-
erally similar to the numerical process outlined in reference 1. The use
of matrices permits the coordination of a set of computational stages to
produce a single matrix equation from which the frequencies and mode
shapes of the system can be obtained by application of elementary prin-
ciples of matrix algebra.

The growing importance of aercelastic behavior and the use of atti-
tude and attitude rate sensing devices in vehicles with control systems
have given rise to the need for the slopes of the natural mode shapes.
The addition of the moments of the modes with proper consideration of
their relative magnitudes often provides a convenient way for obtaining
the composite bending moments of a structure. Consequently, the equa-
tions for the mode slopes and moments associated with the various mode
shapes are also developed and presented herein.

The effects of shear deformation and rotary inertia are sometimes
significant in the higher modes of oscillation, but the added complica~
tions and additional parameters necessary to incorporate these secondary
influences are seldom justified and consequently these effects are not
included. The engineer nevertheless should be cognizant of the poten-
tial significance of such omissions in the special cases requiring
extreme accuracy of mode data.

In order to assist the user in selecting the number of masses
required to yield results to a desired accuracy, data are furnished on
the influence of the number of discrete masses on the accuracy of the -
frequencies and mode shapes of a uniform beam. In order to illustrate
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the matrix operations, a detailed numerical example is furnished for a
uniform beam. For the engineer unacquainted with matrix notations and
methods, the elementary concepts essential to the derivations of this
report are available in a number of texts on matrices such as refer-
ences 2 and 3.

An application of the method to a typical rocket vehicle is pre-
sented to illustrate the input data and to show the typical output.

SYMBOLS
A matrix of equation (10), in./lb
a8 coordinate in least-error analysis, in.
ay scaling constant given by equation (18), in.
b coordinate in least-error analysis, radians
cy coordinate to joint u, in.
D(s) sweeping matrix given in equation (19)
E modulus of elasticity, 1b/in.2
F. inertia force of rth mass at rth station, 1b
f natural frequency of the free-free oscillation, cps
hr(s) trial column matrix for iterating for the sth mode, in.
I moment of inertia of structural cross-sectional area, in.u
J mass moment of inertia about the zero station, 1b-1in-sec?
Jr the Jth value at the reference station r
L total length of beam, in.
M moment of the mass about the zero station, 1b-sec?

Mg bending moment at the sth station, in-1b
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V.=xi+

end moment in influence coefficient derivations, in-1b

p-1
total mass of system = ZE: Oy, lb-secz/in.

n=0
nth discrete mass, lb—sec2/in.
force in influence-coefficient derivation, 1b
number of discrete masses in the system

reference mode deflection at x;

i for comparative purposes

WANN\O

by least-square method, in.

radius of gyration of the total mass about the center of
gravity, in.

strain energy, in-1b

boundary shear force in influence-coefficient derivation, 1b
number of Jjoints considered in the structure

é% coordinate from left end of uniform beam, in.

moment matrix, in.
coordinate along the length of the vehicle, in.

coordinate to the rth station, in.

distance to the center of gravity from the Oth mass, in.
general function of x, units vary

an approximation to the sth mode shape, in.
deflection at x, of the sth natural mode, in.

discrepancy between modes at the ith point determined by the -
matrix methods and by exact method
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6(x1)
(u)
gr,n

deflection influence coefficient for elastic bending only,
deflection at x = x, due to a unit load at x = x, when

cantilevered at x = 0, in./lb

2
X .
— dx, in./1lb
o /

rotation at a joint due to a load P, at x,, radians

deflection influence coefficient considering elastic rota-

tion of joint u only, deflection at x = x,. due to a

unit load at x = x, when cantilevered at x =0, in./1b

error in natural frequencies between matrix method and com-
parative exact solution, percent

error in mode shapes between matrix method and comparative
exact solution, percent.

mode displacements of comparative exact solution

slope influence coefficient considering elastic rotation of
joint u only; the slope at x = x,. due to a unit load

at x = x,, when cantilevered at x =0, radians/1b

1 -1 -1
- dx, 1lb™"-1in.
BT ) in

slope at the rth station, radians

slope at x = x, due to a load P at x = x, when canti-
levered at x = 0, considering beam flexure only, radians

slope influence coefficient considering beam flexure only,

slope at x = x. due to a unit load at x = x, when

cantilevered at x = 0, radians/lb

joint rotation constant for joint wu, radians/in-1b

sth eigenvalue of equation (10) or equation (20), l/wsem,
in./lb-radia.ns2



Xr X -1
}J.r = o ﬁ dx, 1b

o) total slope influence coefficient considering both bending

and joint effects; the slope at x = x,, due to a unit load

at X = x, when cantilevered at x = O, radians/lb

o] total deflection influence coefficient considering both
bending and joint effects, the deflection at x = x,

to a unit load at x = x, when cantilevered at x =0,
in./1b

due

w circular frequency for natural vibrations of the free-free
system, radlans/sec

T
s B » 1 10, column, diagonal, square, row, unit,
and transpose matrices, respectively

Subscripts:

i, J,n,r,s,u integers
DERIVATION OF THE EQUATIONS OF MOTION

The derivation of the equations of motion for the free-free struc-
ture including detail developments for determining boundary values, mode
slopes, mode moments, and all necessary influence coefficients is given
in this section.

General Procedure for a Free-Free Unsymmetrical System

The solution requires that an equivalent system of discrete masses,
such as that illustrated in the following sketch, be devised that will
adequately represent the continuous system. The load-deflection charac-
teristics are stated by use of cantilever influence coefficients which
are derived by use of elementary beam-flexural theory for small dis-
placements and with appropriate consideration of local joint rotations.
Second-order effects such as shear deformation and rotary inertia are
not included.

\NANN\O +
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“—“22:~> rth discrete mass of

. P masses
yo f'e yr

1/\ Unstrained position

Sketch 1

Let o0, , define the deflection at x = x, due to a unit load at
’
x = x5 when cantilevered at x = 0. Then the deflection at x, for

a system of p discrete masses can be stated.
-1
Yy = ;{: Fnop n + 8oXr + Yo (1)
n=1

For a free-free vibration, the forces F, are composed only of the

inertial loads which according to the laws of conservation of linear
and angular momentum satisfy the equations

p-1
Z F, =0 (2)
n-
-1

Fox, = O (3)
n=0

For steady-state harmonic oscillations at frequency

Fp = mnwgyn (%)

The substitution of equation (L) into equations (1), (2), and (3) yields
P+ 1 equations for p + 1 wunknowns

p-1

Yp = e Z Op, nfn¥n * 8%y + Yo (5a)
n=1



-1
OoYo + zz: mpyp =0 (5b)
=1
-1
Z Xyfin¥y = O (5¢)
n=1

By changing the n subscripts to r in equations (5b) and (Sc), sub-
stituting equation (5a) into the modified equations in place of y,,
and introducing the following notations:

p-1

me + EZ: me = m

r=1

which is the total mass of the system,
p-1

}Z: m.X, =M

r=1

which is the moment of the mass about the zero station, and
p-1

2 -
Z mex,© = J

r=1

which is the mass moment of inertia about the zero station and since
o = 0 by definition, then equations (5b) and (5c) become in matrix

fogi
SRRVA Vs I
and
001+ o+ 2] ) {5 - o .
<n=l,2,5.. p-l)
r=1,23...p-1

(SYRGTRVORN il
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Noting that

where: X 1is the distance to the center of gravity of the system from
the x origin, and
T is the radius of gyration of the total mass about the center
of gravity of the system
then with these notations and by solving equations (6) and (7) simultan-
eously for 6, and y,, it is found that

2 Xy m;W mp
-l e o
yo=—w%nl+;z§-§—§%] %[}I‘)J@{y; (9)

By substituting equations (8) and (9) into equation (5a) and making some
permissible interchanges in subscripts, the desired form of the equa-
tions of motion in matrix notation is obtained as

x|l

8o =

oPn

ol

N ERESIERVER | SS
Cibziiiizil) oo

The solution of equation (10), which is of the familiar form of an eigen-

value problem, that is;
)\sé(r( s} = [Ai\ &r(s} (10a)

will yield the natgral frequencies and natural mode shapes of the dynamic
system. The bracketed letter (s) added to the modal column Yy, is

henceforth used as needed to designate the particular solution of the
p - 1 possible solutions of equation (10).
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The basic matrices necessary for generating the A matrix of

. Xr My
equation (10a) are {(—), =1, and |o. |. The first two of these
X )

matrices as well as the necessary parameters, x and T, are computed
readily once the magnitudes and locations of the discrete masses are

established. The major work.in the generation of equation (10) lies in
developing the Or,n matrix for which detailed considerations are sub-

mitted subsequently.

Boundary Values, y, and 8,

The number of unknown deflections in equation (10) is p - 1, one
less than the number of masses comprising the discrete mass system.
This reduction in order, highly desirable when the modes are computed
manually, is a direct result of choosing the origin of the x coordi-
nate at the end mass. However, by virtue of this choice, the y, value

is lost from the modal column and must be determined separately. The
value of y, could be determined from the explicit expression given by

equation (9), but a simpler solution comes from the equilibrium condi-
tion of equation (5b), which is

p-1
myyo(s) + EZ: myyn(s) =0

n=1

Solving for yo(s) and interchanging the subscripts gives

ole) = - mi/mH k%{”} -

The boundary slope 8, 1is given by equation (8). Equations (8) and (11)
o

are the expressions for the boundary values of the problem. The (y.

column used in both equations is obtained from the solution of
equation (10).

A Method for Solution of Equation (10)
It 1s evident from an inspection of equation (10) that the A matrix

of equation (10a) is not a symmetrical matrix, and therefore the method
of solution must be one appropriate to unsymmetrical matrices. Also,

WAWN\O
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since the modal column Yy, contains only the elements from r =1 %o
p - 1 and excludes yg, the conventional orthogonality relationship of
the eigenvectors does not apply, that is, for equation (lO)

SO IR G R EE +41

Since these particular characteristics of equation (10) preclude solu-

tions for the nondominant eigenvalues by many of the conventional pro-

cedures, a detailed explanation follows for the general solution of the
specific problem for both the dominant and nondominant eigenvalues and

eigenvectors. A special orthogonality relationship applicable to equa-
tion (10) is necessary to the solution and must first be developed.

Special orthogonality relationship.- Multiplying equation (8) vy
M {Xr and equation (9) vy ?\i{l} and subtracting the two results from

equation (10) yields

o iy o) I oo

Premultiplying this result by gr(J)JL%—\ and noting that from

equation (5c¢)
A -
M Yr“ﬂk%\%r(i) - yo(i} = br(jﬂt%;\[or’%@“—;\&r(i} (122)

By expressing equation (12) in terms of the Jjth mode instead of the 1ith,

gives

premultiplying that expression by L{r(iz}L§§1, and using the preceding

condition from equation (5c), it follows that

M\\yruﬂ L“;%Kyga) i you% - buﬂ%@%@{y(@ (13)
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From equation (11),

¥o(i)

' %BJL%{““‘“%
213 {yr@

e ot s 3] o o]
5Ll
o0 - )

oI Lol e

Subtracting equation (13) from (12a) aend utilizing the preceding rela-
tionships ylelds

<>‘1 - %j)Lyr(J) - yo(,jﬂl_n%ér(i} =0 (14)

from which it is established when J # i that

Lyr(a) - yo(aﬂ L%Err(iﬂ =0 (J #1) (14a)

Equation (lha) 1s the special orthogonality relationship appropriate to
the solutions of equation (10).

and

yo(j) =

and

Iteration solution of equation (10).- A recurrence equation is
developed for an iterative solution of equation (10) that will converge
to the desired eigenvalue and elgenvector.
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In the solution for the eigenvalues and eigenvectors of equation (10)
there will be p - 1 linearly independent eigenvectors of which p - 2
are the flexible mode shapes and one, associated with a zero eigenvalue,
has no physical significance. In the specific application, if repeated
elgenvalues exist they nevertheless will not possess identical eigen-
vectors. The eigenvector associated with the zero eigenvalue is distinct
and can be shown to be

D2 08

Let an approximation Yr(s) to the sth mode be a linear combination

of the actual (p - 1) linearly independent eigenvectors of the matrix A;
that 1is,

{%T(SE} = al{gr(li} + ag{%r(QE} + .. .+ ap-l{%r(P - lg} (15)

where {%r(l) R {}T(EE}, c e . {gr(p - lE} are normalized eigenvectors

arranged in & sequence of decreasing magnitude of their eigenvalues,
that is, M > N > %3 . .. %p-2 > %p-l and %p-l =0, and aq, ap,
.. ap—l are the scaling constants for their respective modes.

Assume that {%r(li} to {%r(s - lE} and their proportionality con-

stants aq, ap, . . . a5 7 have been previously determined. Subtracting
the products of known eigenvectors and their scaling constants from the

approximation {%r(si} to the sth mode gives the following function

{%r(si} that is free of the components of the first s - 1 modes:

{%T(SE} = {%r(sg} - al{%r(li} - ag{%r(2z} - e . .- as—l{%r(s - 1}}
= aS{rr(sﬁ + as+l§r(s + l} oo .+ ap-lé’r(p - l} (16)

Premultiplying (16) by the A matrix of equation (10a) and recalling

from equation (10a) that [A{}%As& = ?\Sgr(s}, then



1k

(e o) s

.+ ap—l)p—l{§r P - {% (17)

Repeated premultiplication by the A matrix m times results in

{% (s) :} = a g {%r :} + 8,1 Mg1] {%(s + %}
-t an 1N {’r p - 1& (17a)

Since Ag > Agy1 > - - - > N1 and if the process is continued suffi-
ciently, ag times the mth power of Ay will predominate over all

other terms on the right-hand side of equation (17a). By continuing
the premultiplication by the A matrix until the sum of the s + 1 to
the p - 1 terms becomes insignificant in comparison with the s term,
then it can be stated that

AJm{H,(sﬁ = asxsmérr(s} (17v)

It is thus proven that by repeated premultiplication by | A| of

an assumed function of the characteristies of {%r(si}, the process will

converge on the modal column yr(s) times & scalar asksm. Normalizing

the results of (17b) by dividing by as%sm and using the normalized
column as a final trial eigenvector results in the desired solution

() -~

The scalar quantity aS%sm resuiting from m repeated premultiplica-
tion of {%r(si} by [}{] is generally an enormously large number and
leads to cumbersome numerical operations. This problem can be allevi-

ated by frequent normslizing of the asksm{%r(si} column as needed

\NANAND
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since it does not alter the convergence of the process. The preceding
proof of convergence to the dominant eigenvector is similar to the pro-
cedure used in reference k4.

The function (hy(s)) of equation (16), shown previously to con-
verge on (yp(s)), must now be developed in detail. The column, {%r(sE}
in the function hr(s) , 1s an estimated expression for the sth mode

and may be chosen quite arbitrarily, yet a good estimation is advan-
tageous since 1t will greatly increase the rate of convergence of the

iteration process. The eigenvectors {gr(lf}, {%T(EE}, .. {}r(s - l}}

must have been determined before {%r(si} can be evaluated. The ay,

ap, . . . 85 7 coefficients remain to be determined which can be done
by use of the special orthogonality condition of equation (1lka).

By multiplying equation (15) by {Yr(i) - yo(iEJL?§1 and observing

the orthogonality relationship of equation (lha), it is found that

LYr(i) - yo(i)J[_%;\ Eﬁ'r(%
(18)
R e

Substituting expressions of the type of equation (18) into the equations

for {%T(SE}, equation (16), for values of 1 from 1l to s - 1 ylelds

SR RE é’r(l}LYr(l) - yo(lﬂk%j\ _ {yr(E}_yr(e) - yo(e)Jt‘f—,ﬂ o
{r } U t/rm - 9ol L"%’]{yr(l% Lyrmq - yo<ejtﬁ{yr<z§ |

{Yr(s - l% Lyr(s - l) - yo(s - ]_j |\ng\
e &
Lyr(s - 1) - yols - lj\;f—“{,rr(s - 1%

= E)(Sﬂ &r(S} (19)
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Premultiplying equation (19) by the [A} matrix results in a supplemen-
tary equation to (10a) that will converge upon the nondominant sth eigen-
vector upon repeated premultiplication by the product {}} D(;ﬂ , thus

str(S)} ) BE)(S%@'(% <§r?sl; o) =0 T l> (20)

where ‘é(si} is the square matrix of equation (19) and is a special
sweeping matrix. Equation (20) for s =1 degenerates to equation (10a),
and consequently it can be seen that equation (20) is a general expression

from which both dominent and nondominant solutions for the natural modes
and frequencies can be obtalned.

Mode Slopes

Let py pn be the slope at x = x, due to a unit load at x = X,

when centilevered at x = O, then, the total slope 6y at the rth sta-
tion can be expressed as

CRRVALER

Substituting equation (8) for 6y and equation (4) for F, yields

ORI L N O

which relates the desired slopes explicitly to the modal column of
equation (10).

Mode Moments

By letting Mg equal the bending moment at the sth station of a
natural mode, then

8 5
Mg = Z Fr(xS - xr) = Foxg + Z Fr(Xs - Xy)

r=0 r=

WWA\O
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Substituting equation (4) for F. and equation (11) for ¥, and
expressing in matrix form glves

-4 - 6]

where xg - Xp 1s replaced by zero when Xy 2 Xg for s =1, 2, 3,

. p- 1.

When considering the conditions imposed, the Xg - X, matrix
becomes a triangular matrix as illustrated

o 0 0 ... 0]
Xo - X1 0 0 . e 0
Xz = X Xz - Xp 0 . e 0
X) = X X, - X5 X), - x5 . e 0

X5 - Xz .« v . o
Xp-1 - X1 Xp.1 = X2 Xp.1 - X3 . .. O_J

The {%%}tfj matrix is

xl Xl xl e o . xl
X2 X2 X2 . e X2

x5 XB . s e e XB

Xp1 Xp1 - C e e Xpg
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Subtracting the {}%}{}J matrix from the [%s - x{] condltional matrix

results in

—

xl xl Xl Xl xl « o a . Xl
Xl x2 X2 XQ XQ « e . . X2
xl X2 XB X5 xa . v . . X5
Xl X2 X Xh xu e s e . x)-l- m m
. . . . . « o s . X.p_2
xl' Xy Xz X, . c e+ Xpo Xy
(r=1,2, 3. ..p-1) (22)

Equation (22) conveniently expresses the bending moment at any station in
the system except station zero. ZFor a free-free system such as the one

being investigated, the moment at the zero station is zero. The [%J

matrix is a symmetrical matrix where all elements to the right and below
the diagonal have the same values as their diagonal values; therefore,
it is an easy matrix to generate.

Deflection Influence Coefficients

The deflection influence coefficient Or,n is considered as being
composed of two contributing parts: the part “r,n due to elementary
beam flexure only, and the part &, p due to local rotation.

Deflection 1nfluen9e coefficients due to beam flexure only.- Let
%r n be the deflection at x = X, due to a unit load at x = X, con-

sidering elementary beam flexure only and cantilevered at x = O. Then
consider the following sketch:

WL\ B
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Sketch 2

Then, from sketch 2 when O < x < xp,

a2y
EI —= dx2 =My + Vpox

Xr Xp
1 X
M: ___dx — dx
Jf v u/; ET

f T2 N
— dx + V k/ﬁ dx — dx
= Yo 0 0 EI

The double integrals can be reduced to single integrals by integrating
by parts, that is,
Xr Xr
1 X
xrf —dx-f = dx
0 EI 0 EI

xr X
J e &
0 0
Xp Xr 2
xrf X ax - o7
o EI 0

Xy X
Jo e, &
0 0]

By making these substitutions in Yy and noting that

and

Jr
Mo = Pxp Vo = -P F - %,n



fxrx2 fxr X fxr 1
O p = , dx - (xn + xr) , E dx + XpXp , dx (23)
(valid only when Xn 2 xr)

By using the following definitions,

Xp Xr Xr 2

1 X b'S
_dx:.r‘ f ._d_x=ur f _dX=Br

L/; EI r 0 EI 0 EI

the aT,n coefficient becomes
% n = Br - (Xn + x&)ur + Xpxpnyr (when n 2 1) (23a)

Equation (23a) is the equation for the deflection influence coeffi-
cient of a beam cantilevered at x = 0 due to typical beam flexure only.

Equation (23%a) is expressed in the matrix form

L0180 F8 -Gl -

According to Maxwell's reciprocal law, the coefficients when n < r can
be found immediately, since

%,n = %, r
Therefdre equation (23b) is a symmetrical matrix.

Deflection influence coefficients due to joint rotation.- In many
fabricated structures the beam analogy might not be adequate to describe
local points of high rotation which result from joints or other geometric
characteristiecs. It is therefore desirable to include in the overall
influence coefficients terms to allow for slope discontinuities such as
those illustrated in the following sketch:

\NANN\O H
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Joint ,,,/;ilszf;““i

Xp

\\\§£\ N
|

—
Sketch 3

The rotation at the joint will be defined as a linear function of the
moment, that is

y = KuPn<xn - cu)

The deflection at x = x, due to v such Joint rotations resulting

from a unit load at x = xp 1is
v
8r,n = §: Ku(xn - cu)(xr- qa (2k4)
u=1

vhere the product (xn - cu)(xr - cu> under the summation is considered
to contribute to the sum only when

>
Xr;Xpn = Cu

Equation (24) can be expressed as the sum of v separate square matrices,
one for each value of u, that is;

-0 00 -0 .

where
S(u) # 0 (when x > ¢, )
r,n r» *n u
B(u) =0 (vhen xp, X S cy)

r,n
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(u) _ 5w

Since the matrix is symmetrical, that is, 8r n = n p» only one-half
b

the elements need be computed. The typical appearance of the Biug
>
matrix is
—>n
r N
l o o oo . . . 0
lo o o
k———'Rows vhere Xx. < ¢,
0 0 O .
0 O O O./
: (u) 01)///
5 On,r
. / -
o /// @é 5r,n 0, xp, x5 > ¢y
- @y
~ JQ OQ
Z < S ¢
olumns where x, > ¢, Q) 6&0

Total deflection influence coefficients.- Addition of the structural
flexural influence coefficlents and the joint rotation deflection influ-
ence coefficients results in the total deflection influence coefficients

c Recalling that a structure might possess v Jjoints, then

N e R I R

The Ur,n matrix is the deflection influence coefficient matrix and is
symmetrical about the principal diagonal, thus

r,n’

Or,n = On,r

Slope Influence Coefficients

Mode slopes are of fundamental value in many other studies, partic-
ularly those involving airloads on the beam. They are conveniently com-
puted by use of slope influence coefficients as was previously demon-
strated by equation (21). As was the case of the deflection influence

WWW\O B
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coefficients, two contributions to the mode slopes are considered: the
slope due to elementary beam flexure, and the effects of a finite rota-
tion at a local point.

Slope influence coefficients due to beam flexure.- Let v, , be
2

the slope at x = x,, due to a unit load at x = x;; due to beam flexure

when cantilevered at x = 0. Then, from inspection of the following
sketch:

—

Sketch 4

it is found from summing moments about x = Xg
Mg - Mp - Pxp =0

and summing vertical forces

The moment at x 1n the span where O $x ¢S Xpy 18
My = Mg + Vox = My + Pxy - Px = My + P(xp - x)

and the moment at x in the span where x, £ x S xp, is

My = Mg + Vox - Mp = P(xy - %)

The total strain energy in the stressed system is

oo frlere P bl

xp 2EI
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The slope at x = x,. due to the load at x = Xpn 1is

. =aU=ferr+P(xn-x)dx
r,n aMr 0 ET

from which the influence coefficients are obtained, that is,

ae xr X, - X xr XI.
v = r,n = f K_nEI—). dx = xn f ...l_ dx - i dx
0

0 " TSP Jo EI o EI

(valid when r S n)

Since the slope influence coefficient Vr,n # Vn, rs the values of

vn,r for r >n must also be expressed.

P M,

© Xr

Sketch 5

From inspection of sketch 5 it can be seen that the moment at x

(27)

the span where 0O < x < X, 1s the same as for the preceding case, that

is
My = My + P(xp - x)
The moment at x in the span where x, S x S x, 1is

My = My + Vox + P(x

}

»
2
"
=

H

The total strain energy in the stressed system is then

2
R S T
U= dx + —_
0

2EI x, 2EL

AN\ H
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The slope at x = x, due to the load at x = x5 is

_al=fxn[Mr+P(xn—x)]dx+fxrl_v[£
0

r,n T M, EI

6

from which the influence coefficients follow

S L:] Xn (xp - x Xn 1 Xn
Vr,n = a;’n = L .(_.E—I_)_ dx xnf d_x f Vn’n (28)

(valid when r 2 n)

This result is as would be expected, that for M. = 0, the slope out-
board of P, where xy > X, 1s constant at all points and equal to the

value at xp. This result simplifies the problem of determining the

Yron matrix coefficients. It simply means that the coefficients in
J

each column below the diagonal have the same values as their diagonal
values. This is illustrated as follows:

l_—)n
Yil Y12 Vi, e V1 ﬂ Vil Vi Vv . . v
r 3 ) P) s P- » 1, 1,3 1,p-1
V2, 1 V2’ 2 VQ, 3 e . V2’ 1 vl) 1 V2’ 2 V2, ) . . e Vz’ p-1
Y31 Y32 Y33 - - V3pa V1,1 2,2 V3,3 Y3,k - - - V3p
. . . . v v . 4 e
. : : o ) 1,1 V2,2 V3,3 Vu,u Y4, p-1
L"r,n] = =1 - . . (28a)
Vr’l Vr’2 . .. "'r,p-l . . . . .
_vp-l’ 1 Vp—l, 2 Vp-l, B Vp-l, p_]_; Lvl’ 1 v2) 2 V}; 3 . « .o vp_ 1,p-1

Again, using the notation

Xp. X
1 T x

dx = Ny f — dx M
o H 0 T
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the influence elements can be expressed as

Vron = XpMir = Hr (r S n)
(28vb)
Yron = Vn,n = *nm ~ Hn (r >n)
and in matrix notation,
N - 1 g T
N Nrp] *n Hr niXy X2 M1x3 . M M1 Xp-1
N : X MpXs - R - |
N
AN . . . T]3x5 715:(]‘L e njxp-l
Vr,n| * N -
N . . . . .
AN
N
N
L"n,n N LLﬂlxl pXp M3Xz - « ¢ Mp1¥p1
_ -
Hy H1 ¥y Hy
Hp Hzo H2 H2 -+ - - H2
Symmetrical about diagonal
M1 Hp Hz Mz Mz . . “34——-’53
I ) Hr,n = Hn,n = Hn,r (28c)
&ll p2 p} . . e . “'P']_y

When the integrals n,. and u, have been obtained, the Vr,n

matrix is easily generated in the matrix form of equation (28c).

Slope influence coefficients due to joint rotation.- It is desir-
able to include in the slope-influence-coefficient equation a term to
allow for local rotations. Let gr,n be the slope at x = x,. due to

a unit load at x = xp considering an elastic joint rotation such as
that 11lustrated in the following sketch.
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Sketch 6

The moment at the joint x = ¢, due to the load P, is

Pp (xn - cu)

The rotation at the joint will be defined as a linear function of the
moment, that 1is,

Y = "uPn(xn - cu)

The slope at x, due to v such joint rotations resulting from a unit
load at x, is

v
gr,n = Z "u(xn - cu) (29)

u=1l

where the individual bracketed terms (xn - cu) under the summation are
included only when xp, Xp > cy.

Equation (29) can be expressed as the sum of v separate square
matrices, one for each value of u.

[(u = "u }{{% - Cu (valid when x4, xp > cy) (29a)

and

;(u) =0

r,n (vhen xp, xp S ¢y)
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where all negative elements of the transpose are taken as zero, and all
rows when Xr S ¢y are to be replaced by zeros.

If a joint coincides with a discrete mass, observing these state-
ments of validity will yield the slope just to the left of the discon-
tinuity resulting from the joint. The magnitude of the discontinuity
can be readily computed from the product of the joint rotation factor
times the moment at the joint given by equation (22).

The typical appearance of the Cgul matrix is
b

—> 1
l_O o o0 . . . e 5W
r
o 0 . . . . .o 0
. . . ... . Rows where X, < ey
. . . o o o ... 0]
/
Y v
g(u)
0 //:;;/, r,n,,///// All rows are the same
@ooo//////
Xp - Cy, where Xp, Xp > Cy
Columns where Xp S cy

Total slope influence coefficients.- By recalling that is

Pn, r

the sum of the flexural coefficients and the joint rotation coefficients,
the total slope influence coefficient for a system of v elastic joints

is
[pr,% = [vr,-% + Eg}% + [gl(f% .. .4 [gg"’xﬂ (30)

Equation (30) will yield the values of the slope influence coeffi-

cients on,r'

WWNO - B
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Evaluation of Integrals With Treatment of Discontinuities

The éz function in the B,., u,., and Ny 1ntegrals is for most

practical problems a highly discontinuous function, and therefore a
numerical form of integration is generally expedient. A system which
is convenient for tabulation and readily adaptable to automatic digital
computers 1s outlined as follows:

_.7‘L___Ax=(x8—x7) =0 /

Y = Function of x

Sketch 7.- Typlcal curve to be integrated.

The By, ur, and My 1integrals are definite integrals and need to be
evaluated for all designated values of r. In practical cases the
integrands of By, py, or N, should be described at many intermediate
points to the r subscript system. By introducing a ] subscript
system for intermediate points and letting Jr be the value of J at

the rth station, then from inspection of the preceding sketch the area
between J =0 and J = j,. 1is

J
LS }f (2 + YJ'l)S‘J S, (51)
J=1

Notice in sketch T that each discontinuity is described with two
ordinates and the stations where there are no discontinuities are
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defined with only one ordinate. The discontinuity can be considered
simply as two adjacent stations with a spacing that approached zero.
Thus, no speclal treatment need be given discontinuities except that
the data be supplied with two or@inates at a discontinuity with each
having the same x value. Therefore, in equation (31), (xj - xj-l)

across a discontinuity will be zero and no change will occur in the
integral. As an illustration, a listing of stiffness data and the desig-
nation of integration limit for evaluating Br, Hp, and 17, for a

typical research launch vehicle is furnished as table I. The englineer

should adequately describe the Yj function to minimize numerical inte-

gration errors and to represent better the actual physical problem.

Equation (31) is sufficient for evaluating the fp, Kr, and By
integrals by letting the function YJ represent the integrands

1

=, X, and 52, respectively.
EI EI EI

GENERAL DISCUSSION AND RESULTS

In the foregoing discussion the equations for obtaining the natural

mode data of a free-free structure have been derived and presented. A
general discussion of the problems encountered in the application of

the equations 1s presented in the following paragraphs and two example
solutions are included to illustrate the method. Results of a study to
ascertain the accuracies of the calculated natural frequencies and mode
shapes and their dependence on the number of masses employed are also
furnished.

Cholce of the x Origin

The selection of the origin of the Xx coordinate at the location
of mg was based upon several factors which primarily arose from past

applications of the method to multistage rocket vehicles. For multi-
stage vehicles where 1t is desired to obtain the frequencies and modes
for the combinations of stages, 1t at first appears expedient to choose
the x origin at or near the nose of the uppermost stage. This cholce
permits the use of input data developed for the combined stages for the
cases of fewer stages. However, this choice of the x origin, while
being most efficient from a work standpoint, has an inherent disadvan-
tage of reduced accuracy. Because the tip of the vehicle 1s usually
the region of greatest flexibility and the influence coefficients and
boundary values, Y, and 6,, are referenced to the x origin, the

VWO +
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choice of the origin at the nose introduces unnecessarily large boundary
corrections (yo and Qg which reduce the accuracy and sometimes affect

the numerical solution for the higher modes. These problems can be elim-~
inated in most cases by choosing the x origin at the more rigld end of
the vehicle.

In cases where the vehicle is already constructed at the time of
analysis, the choice of the origin at the base of the vehicle in many
cases has a second advantage of permitting direct measurement of the
influence coefficients. Since the coupling hardware for combining the
stages can in many cases be used for mounting the missile on a bed plate
or back stop, the influence coefficients can be directly measured by
using simple dial gages and moderate applied forces. On the other hand,
the average rocket vehicle could not be readily supported as a cantilever
from its nose.

Locations of Mass Stations

It has also been observed that the positions of the mass stations
should be determined by giving primary consideration to the purpose for
which the mode datsa are likely to be useqd. Experience has indicated that
to minimize the reworking of input data, the selection of mass stations
should be strongly influenced by the aerodynamic-load distributions.

For example, if the influence coefficients and assoclated modal data

are to be employed for gust response studies, it is important that the
reference stations be logically located to represent the points of large
localized aerodynamic lifting loads. Likewise, it is desirable to choose
stations at the centers of bressure of 1lifting appendages.

Order of the Characteristic Matrix

The selection of the number of discrete masses to represent the
continuous system will establish the order of the matrix solution. A
system of p masses will necessitate the solution of a matrix of
order p - 1. The number of masses used should be based primarily on
the accuracy desired for the highest mode to be extracted and the
available computing capability to handle large matrix iterations.

The results of a study of the influence of the number of masses on
the errors in frequencies and mode shapes of a uniform free-free beam
are presented in figures 1 and 2. The method derived herein for the
cases treated ylelded frequencies higher than the comparative classical
solutions. The increase in frequency over the comparative classical
solution for the case of the uniform beam is shown in figure 1 as the
percentage error due to the discrete mass representation. An inspection
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of a cross plot of these data for a l-percent error shows a close corre-
lation between the data and a simple analytical expression. Consequently,
1t is suggested that an error in frequency not greater than 1 percent

can be maintained by the use of the following approximate rule:

(174N

p=13\3/E (1 $n<s)

where n 1is the number of the highest mode desired and p 1is the num-
per of masses to be used in representing the system. The discrepancies
between the computed mode shapes and the classical mode shapes are shown
as figure 2. These data show the largest of the errors between like
modes at the points of the maximum deflections. The modal differences
were determined after alining the two comparative curves to yield the
least possible error by the method of least squares. The comparison
was made strictly on the basls of the agreement between the shapes of
the computed modes and the classical modes for the free-free uniform
beam. 1In order to provide a wide freedom in alining the computed and
comparative data, the classical mode shape was permitted to be trans-
lated and rotated as necessary in the alinement to provide a minimum to
the sum of the squares of the differences between the shapes. The ref-
erence curve was expressed as

q = a + b(xi - i) + cg(xﬂ

where a, b, and c¢ are coordinates permitting a wide freedom in the
placement of the comparative function aqj, and Q(xi) is the classical

modal deflection at xy wused as a measure of the accuracy.

An inspection of figure 2 shows that errors in mode shape not in
excess of 1 percent through the third mode can be expected with the use
of 21 discrete masses in the solution.

It should be recalled that the analysis of the errors due to the
number of masses used 1s applicable specifically to the uniform beam,
yet these data are jncluded to be used as a gulde in working with
unsymmetrical beams and are felt to be indicative of the sensitivity
of the method to the number of masses used.

Numerical Integration Errors

An investigation of the errors associated with the integration
process given in the section entitled, "Evaluation of Integrals With

(CTRCTAVO N g
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Treatment of Discontinuities" has alsoc been made. The variations in
the natural frequencies of a 26-mass representation of a uniform beam
were computed for evenly spaced EI intervals numbering 25, 50, 100,
150, and 200; and the resulting errors are recorded in figure 3. It is
interesting to note that the integration errors introduced by the trape-
zoidal process tend to counteract the errors introduced by the discrete
mass analogy. In the data of figure 3, the root-mean-square values of
the errors for the set of five modes show that the optimum compensation
of errors for the set of modes is experienced for the case studied with
50 integration intervals. Extending the integration intervals to 200
or more will virtually remove all significant integration errors. This
is apparent in figure 3 by the fact that the curves approach a constant
value for the larger number of integration intervals. The integration
error becomes of decreasing significance as the number of masses are
reduced by virtue of its becoming of secondary importance in comparison
with the increasingly significant error associated with lumping.

The data for the curves of figure 1 were computed using 100 evenly
spaced integratlon intervals. From the Indications of figure 3, it is
apparent that some shifting of the ep values of figure 1 would occur

with change in the number of integration intervals. Thils shifting is

of only practical significance when dealing with errors of 1 percent or
less. The sensitivity of the data of figure 1 to integration intervals
is noted by the comparisons of €p for 100 and 200 interval integrations

given on the figure for p = 26. The comparison suggests that no major
changes in error would result due to Increasing the number of integra-
tion intervals beyond 100.

Slope Discontinuities

When flexibilities exist of the nature of local joint rotations,
the mode slopes will exhibit discontinuities at each joint of the magni-
tude of

7 = KMy

where &, 1s the joint rotation constant at the joint wu, M, is the
mode moment at u, and 7 1s the magnitude of the slope discontinuity.

In the event of a joint occurring at one of the mass stations, the
slope for the station is then double valued, having one magnitude just
to the left of the station and one value to the right. The foregoing
equations have been designed to yield only the slope to the left of
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the joint in cases where the joint location and station positions are
coincident. In order to determine the slope to the right, the magnitude
of the discontinuity is readily determined by the above equation for 7.
This treatment of discontinuities is clearly illustrated in figure k4.

Shear deformations will also yield slope discontinuities in struc-
tures possessing discontinuities in shear stiffness. If extreme accuracy
is required in the definitions of mode slopes and if shear deformation
is thought to be a significant contributor to deflection, then the sub-
ject method should either be extended to include shear effects or be
discarded in favor of methods more suitable for treating secondary
influences.

NUMERICAL EXAMPLES

Two numerical illustrations of portions of the foregolng deriva-
tions are submitted in order to show more clearly the procedures and to
demonstrate the simplicity of the method presented. A solution of the
classical case of the free-free vibration of a uniform beam is glven
and a detailled application of the method to a typical rocket vehicle
is shown.

Free-Free Uniform Beam

Consider the following representation of a uniform beam of total
mass m and overall length L.

‘ED; ; 64/¢
T !
I

o]
ct
oy

*n

+
1
é

J—;#

d|B

Sketch 8.- The p mass system of a uniform beam.

For the equally divided span, the six segments are represented by six
equal discrete masses (p = 6), thus

o

m[1=

(o)

W\



WAN\O

55

X = Tg n
X = ELR_:_il =2 L
2p 12
5
Y o
-2 _ 0 NI G . )V
5 6 x 36 1k 432
)
0
and
¥ _15
= T

Utilizing the above quantities and relationships, the various matrices
of equation (10) can be evaluated and result in the following expressions.
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With the preceding matrices, the premultiplier of the o matrix of
equation (10) can be written

5880554

148 bk 26 -8 10|

RN
M
»

b o172 232 226 -20
=L log 32 172 -k -50
-8 -26 -4 148 -80

Llo -20 -50 -80 100

When EI can be assumed constant as in the case of the uniform
beam, equation (23) can be easily expressed analytically as

1 xr o xr Xr
@r,n=ﬁ/; xdx-(xn+xr) k/; xd.x+xnxrfo ax
X2 X
- i - )
= (E)E Eg—(3n - ) (n2r)
6/ 6EI

and % n = 9a,r wvhen n < r. Upon evaluation of the previous equation

for the appropriate combinations of n and r between 1 and 5 and
arranging the results in matrix form, the following matrix for %r,n

results

W\N\O
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—>n -
i 2 5 8 11 14
r

16 28 ko s2

[}T’é} L8 28 sk & 108
11 4 81 128 176

14 52 108 176 250

— —

By assuming that the uniform beam is free of any local Jjoint flexibili-
ties, then

%,n = %,n
and the A matrix can be written as

(148 b 26 8 10 (2 5 8 11 18 [1 'T
-4 172 32 26 -20 5 16 28 Lo 52 1

[AT =‘—-Ii3-——-26 -32 172 -4k 50! | 8 28 5% 81 108 1
J 35 x 6%k

-8 -26 -4& 148 -8o| |11 4o 81 128 176 1

10 -20 -50 -80 100| |14 52 108 176 250 1
— ——t — — — -
B N

-80 ~k92 -1020 -1502 -1932
=50 -44L  -1530 -3044 -kTOk
= —= 120 -186 -TBO -2066 -369%
10 72 180 172 -168

hbo 330 1140 2620 u6qu
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The solution of equation (10) for the uniform beam is now reduced to
the matrix iteration of

-80 -h4g2 -1020 -1502 -19351
-50 -k 1530 -304k -WTOk
M{y} = |-20 -18 -780 -2066 -36% @
10 T2 180 172 -168

Lho 330 1140 2620 4620

The dominant characteristic value and characteristic function of the
preceding matrix equation will yleld the first natural frequency and
first natural mode shape, respectively, of the free-free uniform beam
as represented by sketch 8. Proceeding by matrix iteration, six itera-
tions of an initially assumed modal column of 0.2, -0.2, -0.2, 0.2, and
1.0 will yleld first mode amplitudes and frequencies to an accuracy
better than one-tenth of 1 percent of the fully converged results. The
mode shape and frequency so obtained are

35 x 6°E1 _ , 3 EL
22 20 B2 = 2986.3 w = 23.385 L
oPu1 Jm?
(C0.1374k
-0.86256
EI
¥, = ﬁ-o.asz%g £=3.12 %5
-0.13741
1.00000
\. ~

From equation (11), ¥y, is

WANNO
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1 Z0.13744)

1 -0.86256

Yo = - t¥} 1 | -0.86256
' 1 | {-0.137M1

L 1| | 1.00000)
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= 0.99997

Should a Joint of Ky flexibility be considered at the third mass

(1)

position, for example, the & matrix would need to be considered.

r,n
By substituting the following into egquation (

xr=%r xn=é‘_n

it then becomes

and the total influence coefficient with the

25),

©

l\o o \S ]

Joint included would be
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(1)

Or,n =%,n t O ,n
2 5
5 16
-2 g 28
6"ET

11 4o
14 52

EI6°

Let -
L

=

148
4
26

-8

35 X 66EI

LlO

—

-80
-20
-20
10
4o

—

8
28
5k
81

108

ohn
172
-32
-26

=20

-ho2
~hhy
-186
T2
330

11
ho

52

81 108! +

128 1

176 2

-26 -8
-32 26
172 -k
bl 148

-1068
-2106
-104k4

228

1500

and the lowest natural frequency and

with the joint are

T6
50

= l; the A matrix becomes

10]

-20
-50
-80

100

_
-1598
-4196
-2594
268
3340

mode shape obtalned for the case

o

K, EI62

o

5 16
8 28
11 4o
1k 52

-20%5
6432
-4488

-24

5700

28 4o

89 144

120 200

N W

L\O

52
120
200
286
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L1

22 X0 BL _ op.641  [EL f = 3.285 [EL_
mL.> mL

-0. 1&170\
-1.00995
¥p = (-0.83797 ¥, = 1.07074

-0.08112

l.OOOOQJ

The mode slopes (dy/dx) are computed by equations (8) ana (21).
With the utilization of the previously developed matrices, the boundary
values 6, for the cases with and without joints are readily obtained.

For the case without a joint,

CT L ) [ 5 8 11 141 (-0.1374k )
1 1 5 16 28 4 s2 1 -0.86256
6y = —2 15| 1 8 28 s+ 81 108|| 1 ~0.862% ) = - 1:2472
2986. 3L, L
-3 1 11 4 81 128 176 1 -0.13741
- 1] i1k 52 108 6 2 .
\5/ L L 5 08 1T 0] 1 \1 ooooo)
For the case with the assumed joint at x = cy = L/},
(3 (. 5 8 11 14|17 (-0.18170)
1 1 5 16 28 k4o 52 1 -1.00995
_ 3 7.6272
8. = -1 1 8 28 58 89 120 1 -0.8 = - 1:9272
° = B p 9 3797 >
-3 1 11 40 89 144 200 1 -0.08112
- 4
-5) L 1k 52 120 200 286J | 1| | 200000
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The slopes at stations other than n = 0 require knowledge of the
slope influence coefficients. From equation (27), 1t may be observed
that the slope influence coefficients due to flexure only can be

expressed, when r $n, as

Xy Xy
_ 1 ax X
Vr,n T *n \/h ET \/ﬁ EL
0 0

For the case of constant EL and when X, = %ﬁ or X, = %E,
1 /1\°
Vron = Eﬁi(é) r(en - 1) (r €n)

It should be noted, as previously mentioned, that the slope influence
coefficients are not symmetrical, that is, Vr,n # Vn,ri yet Vr,n

when r 2 n can be easily found by the relationship

The slope influence coefficients for flexure only for all combina-

tions of r snd n from 1l to 5 are then given by

—>n

i} 9 15 21 2:3

r
3 12 24 36 48

2

_ L

Vron = 535; 3 12 27 45 63
3 12 27 W8 T2
E 12 27 48 72

For the case without jolnts pr pn = Vr)n- Since the solution for

mfLS _ 35 X 60
EI 2986.3
for the case without the Joint can be found from equation (21) as

the characteristic value , the slopes for all stations

WAW\O
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(1) (’;T 1 ‘jﬁ2 5 8 11 14
1 1 1 5 16 28 4o 52
L{ég} = 2922.3 1 -1 1 8 28 54 81 108
1 -3 1 ({11 ko 81 128 176
x%) \‘é; g 1._}& 52 108 176 259
PB 9 15 21 2%1 1] /;0.137u£\ (;5.981i\
3 12 24 3 48 1 -0.86256 -2.3576
+ 353 12 27 b5 63 1 < -0.86256 ) = 2.3577
3 12 27 48 72 1 -0.13741 5.9811
3 12 27 48 T5) L 1| | 1-00000) L7 2&6@

In the event that the structure has a joint, the Vr,n matrix

as shown previously must be combined with the gr’n matrix of equa-

tion (29a). As for the previous example, assume that a joilnt exists
at the third mass station, station 2, which has a joint constant of

Ky = —gé— and position of ¢, = %. Then, from equation (29a), it
6<EI
follows that

[~ (_QT
2
i-f>n 2 2
2
r[cﬁfg ;‘—‘;E—I{l}dﬁ - 2p
2
2 \%ﬂ

N~
and since all coefficlents are zero except those where n,r > 2,
then
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(0 0 0 o o
0 00 00O
2
[;$l%=li5-—00123
? 6”EI
001l 2 3
00123

Addition of these results to the Vr,n matrix results in the slope

{nfluence coefficient matrix which contains both the flexural and joint
contributions, namely,

:91’1

\PB 9 15 21 27|
12 24 36 48

&: ]—Lz 12 31 53 75

TR 63gr

12 31 5% 84

W W W

912315687

The mode slopes at all stations are then obtained from equation (21)
for the case with the joint as

M) (5F 2 5 8 1 1y

1 1 1 5 16 28 Lk 52
L{a‘l}=3—é§%§<ls<-1& 1/l 8 28 58 8 120
1 -3 1|11 4 89 14k 200
L_\lJ K:5J L 1 Llh 52 120 200 286~
(3 9 15 21 2:{:1 1| [-0.14170) (6.5713)
3 12 24 3 48 1 -1.00995 -3.5431
+353 12 31 55 TS| 1 <-o.83797$ = { 2.9511 )
3 12 31 5 84 1 | |-0.08112 5.8297
B 12 31 5 81 L 1 L:L.ooooo) \6'81591
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The mode moments are readily computed from equation (22). Since the
moment equation is of elementary construction, it simply follows for
the case of the uniform and equally spaced masses that for the case
without a joint,

1011 1 1)1 ) (-o.137a) (15.19
1 2 2 2 2|1 -0.86256 28.29
o) L
L 35 x 6 _
2 (M 1 2 1 -0.862 = ( 28.2
EI{S} B 3 3 3 56 9}
1 2 3 L4 4 1 -0.13741 15.19
1 2 L 1 1.
L 3 EJ_ L ommg) \o )

and for the case with the assumed joint at x = cy = L/3

E 1 1 1 ﬂ 1 ] COJArm\ (1a6f
1 2 2 2 2/{1 -1.00995 23.66
2 in
L B 5 % 6 _ _
2 (M) = - 1 2 1 -0.8 ={22.71
= % LW 3 3 3 0 3797? 7 }
1 2 3 4 4 1 -0.08112 11.83
2 I .
L 3 gJL_ 1 \\1 oooogj L o} ,J

The mode shapes, mode slopes, and mode moments calculated above for the
1llustrative case of a uniform beam are displayed on figure 4 for both
of the cases; with and without the joint.

Modal Data for a Typical Space Vehicle

In figure 5 a 22 discrete mass representation 1s shown of an actual
space vehicle for which the first three natural modes, their slopes, and
moments are furnished as an illustration. The discrete masses are con-
sldered to act at the center of gravity of the distributed masses which
they represent. From figures 1 and 2, it is estimated that the 22 dis-
crete masses should adequately represent the vehicle's distributed mass
to yield data on the first three lowest modes with errors of less than
1 percent.



In tsble I the flexural coefficlents EI are recorded in a con-
venient form for expediting the required integrations in accordance
with the trapezoidal process noted previously. One hundred fifty-six
integration stations are supplied to insure negligible integration
errors. All discontinuilties are included by simply recording both quan-
tities for their common x value. The x values on table I marked
with a footnote are the locations of the mass centers and are the inte-
gration limits at which the integrals are required for the influence
coefficients. In table II, joint rotation constants and their locations
are furnished for the inclusion of Jjoint effects in the example vehicle.

The data of figure 5 and tables I and II constitute the necessary
input data to calculate the natural frequencies and other modal data for
the vehicle. From these data, the first three modes, their slopes, and
moments for the example vehicle have been computed and are furnished as
figures 6, 7, and 8. The data are given for the vehicle with and with-
out joint effects. The magnitudes of the discontinuities in the slope
curves are equal to the products of their respective Joint rotation con-
stants and bending moments. All of the modes have been normalized at
the 22nd mass and the moments are applicable to the unit deflection of
the normalized modes.

CONCLUDING REMARKS

A coordinated matrix approach to the problem of free-free vibrations
of unsymmetrical beam-like structures has been presented.

In the application of the method it has been found advantageous to
choose the origin of the independent variable x at the discrete mass
on the more rigid end.

The choice of the positions of the discrete masses should be dic-
tated by the ultimate use of the modal data to be obtained and in con-
sideration of the actual physical properties of the structure.

The number of discrete masses should be selected to malntain the
mode shape and frequency errors within the limits desired. From con-
gsiderations on uniform beams it is indicated that errors in frequency
of 1 percent or less can generally be maintained for the first five
modes by the use of the following approximate rule:

p =13¢m
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where n 1s the number of the highest mode desired and P 1is the num-
ber of masses to use in representing the system. Errors in the mode
shapes can generally be held to within 1 percent for the first three
modes by using at least 21 discrete masses in the solution.

Conslderation of a uniform beam suggests that when employing trape-~
zoidal integration in the influence coefficient calculations at least
50 integration intervals should be used. Extending the number of inte-
gration intervals to 200 or more will virtually remove all significant
integration errors.

The method provides a means for the treatment of flexibilities such
as those associated with Joints. Frequently the contribution of Jjoints
to the flexibility of the system is a significant factor in the deter-
mination of the modal data.

In addition to mode deflections and frequencies, procedures are
outlined for obtaining the slopes of the mode shapes and the moments
associated with the modes.

The method is i1llustrated by applications to both a uniform beam
and a typical research launch vehicle.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Air Force Base, Va., February 16, 1962.
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TABLE I.- FLEXURAL STIFFNESS DISTRIBUTION OF A LAUNCH VEHICLE

k9

X3, EI, X3, KT, X3, EI,
J in. 1b-1n.2 J in. 1b-in.2 / in. 1b-1in.2
o| @0 1.485 x 109 | 53| 174.86| 10.11 x 107|105 | 355.08| 4.670 x 107
1 ho01| 1.485 sk | 175.66| 3.780 106 | 356.08| 9.000
2 4,51 1.485 55 | 180.19| 3.591 107 | 356.08| 9.000
3 L.58 | 1.500 56 | 18L.68| 2.503 108 | 360.78 | L.12
4 6.51| 2.420 571 185.18| 3.38% 109 i 365.47| k.51
5 7.01| 8.580 58 | #187.61 | 3.384 110 | 366.37{ L4.90
6 7.51| 8.580 59 | 192.23| 3.384 111 | 366.98 | 13.10
7 7.51 | 11.71 60| 192.33| 3.384 112 367.27| 19.07
8 9.51| 8.870 6l | 193.53| L4.066 113 | 367.77| 21.4
9 10.51 | 6.785 62| 194.09 (| 6.990 11k | 368.271 9.95
10 11.71 | L4.252 63| 195.09 8.394 115 | 369.20 | 14.31
1 13.53 | L.252 6k | 196.09{ 10.60 116 | 369.20{ 9.086
12 18.53 | L.252 65| 197.09| 8.870 117 | 373.47| 3.726
13| %23.53| L.252 66 | 198.09| 6.276 118 | 837k.53 | 2.759
1L 28.53 | L4.252 67 | 199.26] L.2s52 119 | 378.47 | 2.035
15 33.53 | k.252 68 | 203.53| L4.252 120 | 283.471 1.854
16 38.53 | k.252 69 | 208.53| 4.252 121 | 387.22; 1.172
17| 43.53] h.252 70 | 8212.53 | 4.252 122 | 387.22 .87
18 48.53 | h4.252 71| 218.53| L4.252 123 | 387.72| 1.637
19| ®53.53| 4.252 T2 | 223.53| L.252 124 | 387.72| 2.229
20 58.53 | L.252 73| 228.53| L.252 125 | 388.48 | s5.713
21 63.53 | 4.252 7% | 8234.53 1 L.252 126 | 388.48 | L.486
22 68.53 | L.2s2 75| 238.53] L.os2 127 | 3%93.53| 1.2
23 T3.53 | L4.252 T6 1 243,531 L. 252 128 | 8396.53 | 1.2
2y a78.55 4,252 T7 | 248.53| L.252 129 | 398.53| 1.2
25 83.53 | L.252 T8 | 253.53| 4,252 130 | 403.53| 1.2
26 88.53 | h.252 79 | B256.53 | L.252 131 | L408.53| 1.2
27 93.53 | 4,252 80| 258.53| L.252 132 | 413.53| 1.2
28 98.53 | L.252 81| 263.53| L4.252 133 | 8418.53 | 1.2
29 | 103.53| L.252 82| 268.531 L.2s52 134 | L23.53 ) 1.2
30| 108.53 | L.252 83 | 273.53| L4.252 135 | L428.53 1.2
31 | 2113.53 | 4.252 84 | 278.53] L.252 136 | 433,53 1.2
32| 118.53 | k.252 85 | 8284k.53 | L4.252 137 | 438,53 1.2
33| 123.53 | 4.252 86| 288.53| L.252 138 | 843,53 | 1.2
34 | 128.53 | 4.252 87 | 293.53| 4.252 139 | W8.53 1 1.2
35 1 133.53 | L.252 88 | 298.53| 4.252 140 | 453.53 | 1.2
36| 138.53 | L4.252 89 | 303.53| 4.252 11| 458.53| 1.2
37 | 343,53 | 4.252 90 | 8308.535| L4.252 142 | 8y6L .53 | 1.2
38| 148.53| L4.252 91 | 313.53| 4.252 143 | 468.53 | 1.2
39| 153.53 | 4.252 92| 318.53| L4.252 e | 473.53 | 1.2
40| 158.53 | 4.252 93 | 323.53 1 4,252 15 | 478.38 | 1.2
41 163.26 | 4.252 o4 | 328.53| L4.252 146 | 478.53 | 4.06
h2 | 164.36 | 6.784 95 | 8330.53 | 4,252 147 | 479.03| 1.18
43| 165.36 | 8.87 96 | 333.53| L.os52 148 |ai82.53 | 1.18
Ly | 8165.53 | 9.638 97 1 338.53 | L4.252 kg | 485.98 | 1.18
45 | 166.36 | 11.71 98 | 343,53 L4.252 150 | 489.98 | 1.ko
Le | 167.48 | 9.913 99 | 348.53| L4.252 151 | 490.48 .076
L7 167.86 | 6.318 100 | 350.86| L4.252 152 | 490.88 .076
48| 170.26 | 2.678 101 | 352.06 | 6.804 153 | 495.98 | 2.39
kg | 172.86 | 4.894 102 | 353.06| 8.87L 15k | 496.48 .076
50 | 173.66| 9.035 103 | 354.06 | 11.72 155 | 8499.53 .Q76
511 17h.26 | 2.648 104 (8354.53 | 8.276
52| 174h.28 | 2.905

8ocations of mass stations and limits of integration for equation (31).



TABLE II.- JOINT ROTATION CONSTANTS, ky

a Cus Ky
in. radians/in-1b
1 4.580 6.50 x 10~
2 167.48 4.00
3 174.28 20.00
i 192.30 6.50
5 355.08 4.00
6 366.98 3.00
7 388.48 20.00
8 478.38 20.00
9 490.88 20.00
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Figure 1.- Percent error in natural frequency of a uniform free-free
beam as. a function of the number of discrete masses used in the
‘solution.
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Figure 2.- Maximum error in the mode displacement of a uniform free-free
beam as a function of the number of discrete masses used in the
solution.
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Figure 4.- Mode shapes, mode slopes, and mode moments for a uniform
beam represented by 6 discrete masses.
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Figure 5.~ Discrete mass representation of a typical three-stage space

vehicle.



56

1 T
l With joints _—
L.98 cps Without joints — — — —

S = s~ 6.36 cps /
¥p(1) 0 \\1/\ T ’A///

/— 15.81 cps
— 12.60 cps /
/

@) o= | 7

N 30.26 cps T T 28.36 cps /
/] Pa X

ye(3)0 Z_h,/// \ /

X

0 100 200 300 300 500
! x, in.

Designates location of ,joints

%i% S

Figure 6.- Natural frequencles and mode shapes for the first three nat-
ural modes of a three-stage launch vehicle.
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a, deg

Figure 18.- Variation of pitch characteristics with angle of attack at
six Mach numbers for two-stage configuration without auxiliary rocket
motors. 12-sq-ft, A = 1.5 fins; &7 = 0°; B = 0°.
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(a) &1 = 09 p = 0°.

Figure 20.- Variation of pitch characteristics with angle of attack at
four Mach numbers for two-stage configuration. 10-sq-ft,

A =1.5 fins.
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A = 1.5 fins.
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Figure 23.- Variation of pitching-moment derivative Cma, normal-force
derivative CNU,’ and axial-force coefficient CA,o with Mach number

for three-stage configurations.
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Figure 25.- Variation of rolling-moment coefficient Cy with Mach

number for three-stage configurations.
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Figure 26.- Variation of pitching-moment derivative Cma’ normal-force
derivative Cp_, and axial-force coefficient Cp,o with Mach number

for two-stage configurations.
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Figure 28.- Variation of rolling-moment coefficient C; with Mach
number for two-stage configurations.
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